
Chapter 6

Data Structures

Up to this point we have restricted our data to simple values: numbers and
strings. In the real world data is far more complex than this. Consider a
program that represents people. The program might need to keep track of
physical characteristics, like height and hair color. Or it might need to track
personal data, like name, age and social security number. Or it might need
student id-numbers and transcripts (which are themselves lists of courses and
grades). Most programs that deal with objects in the world store multiple
items of simple data for each object. Data structures are program constructs
that hold multiple items of related data, where each item can be of any type.
Python has a rich, easy-to-use set of data structures that will enable you to
write sophisticated programs with relatively little effort. In this chapter we will
look at three important data structures in Python: lists, tuples and dictionaries.

159

160 CHAPTER 6. DATA STRUCTURES

6.1 Concepts

Data structures allow us to package together multiple items of simple data. For
example, we might have a list of numbers: [2, 3, 5], or a list with a name, age
and serial number triple: [”Bob”, 59, ”123−45−6789”], or even a list of lists:
[[1, 2], [3, 4, 5], [6]]. You can think of the concept of a list as a template
for any sequence of data, of any type whatsoever. All of the structures we will
look at in this chapter are templates for assembling simpler data into packages
so that one element of the structure might be composed of many individual
data items. These structures differ in the mechanisms for how they are created,
how data is inserted into them, and how that data can be accessed. Your job
as a programmer is to choose the data structure that fits the situation you are
coding in the most natural way possible.

There are several concepts that are common to all three of the structures
we will look at. One of these concepts is the notion of indexing the structure.
This is the mechanism through which data can be retrieved from a structure.
We have seen indexing before, with strings: if s is a string, then s [i] is the ith
letter making up s. All three of our new structures are indexed in the same
way, using square brackets and index values: s [i] is the value in the structure
associated with index i . What differs from structure to structure is the kind of
index the structure allows: some use numeric indexes and some use other kinds
of data for indexes.

Another important concept in Python concerns whether a structure is mu-
table or immutable. Once immutable structures are created, the values in them
cannot be changed. For example, strings are immutable. Suppose we create a
string and store it in variable x with the statement

x = ”Hi , Mom”

Then x [1] refers to the second element of this string, the letter ’i’, but we are
not allowed to write x [1] = ’o’; an error will result. We could write

x = x + ’ ! ’

to extend the string, but this creates a new string "Hi, Mom!" and stores that
in x; the old string was not modified.

Lists, on the other hand, are mutable structures. Suppose we start with the
list L = [1, 3, 5]. Then L[1] is the value 3. This time we are allowed to modify
the contents of the list:

L [1] = 6

changes the list to [1, 6, 5]. Lists come with an append() method that inserts
a value onto the end of the list. If L is this list [1, 6, 5] then

L . append (3)

turns L into [1, 6, 5, 3]. There is no append operation for our immutable
strings. The closest thing to append for strings is the concatenation operator
+, which creates a new list from the content of two old lists.

6.1. CONCEPTS 161

One place where this matters is passing a structure to a function. Suppose
we want a function StringAppend(string , tail) that concatenates the tail on to
the string. We would need to write this:

def Str ingAppend (s t r i n g , t a i l) :
return s t r i n g + t a i l

and call it in the following way:

s = Str ingAppend (”bob” , ”by”)

On the other hand, we could write a list function

def AddToEnd(l i s t , x) :
l i s t . append (x)

We might call this as follows:

L = [1 , 3]
AddToEnd(L , 5)

This changes L to the list [1, 3, 5]. There is no way for a function to modify
a string because strings are immutable, but a function can modify the contents
of a list – lists are mutable.

